Network-Based Identification of Biomarkers Coexpressed with Multiple Pathways
نویسندگان
چکیده
Unraveling complex molecular interactions and networks and incorporating clinical information in modeling will present a paradigm shift in molecular medicine. Embedding biological relevance via modeling molecular networks and pathways has become increasingly important for biomarker identification in cancer susceptibility and metastasis studies. Here, we give a comprehensive overview of computational methods used for biomarker identification, and provide a performance comparison of several network models used in studies of cancer susceptibility, disease progression, and prognostication. Specifically, we evaluated implication networks, Boolean networks, Bayesian networks, and Pearson's correlation networks in constructing gene coexpression networks for identifying lung cancer diagnostic and prognostic biomarkers. The results show that implication networks, implemented in Genet package, identified sets of biomarkers that generated an accurate prediction of lung cancer risk and metastases; meanwhile, implication networks revealed more biologically relevant molecular interactions than Boolean networks, Bayesian networks, and Pearson's correlation networks when evaluated with MSigDB database.
منابع مشابه
Identification of miR-24 and miR-137 as novel candidate multiple sclerosis miRNA biomarkers using multi-staged data analysis protocol
Many studies have investigated misregulation of miRNAs relevant to multiple sclerosis (MS) pathogenesis. Abnormal miRNAs can be used both as candidate biomarker for MS diagnosis and understanding the disease miRNA-mRNA regulatory network. In this comprehensive study, misregulated miRNAs related to MS were collected from existing literature, databases and via in silico prediction. A multi-staged...
متن کاملIdentification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملUsing the Protein-protein Interaction Network to Identifying the Biomarkers in Evolution of the Oocyte
Background Oocyte maturity includes nuclear and cytoplasmic maturity, both of which are important for embryo fertilization. The development of oocyte is not limited to the period of follicular growth, and starts from the embryonic period and continues throughout life. In this study, for the purpose of evaluating the effect of the FSH hormone on the expression of genes, GEO access codes for this...
متن کاملMetabolomics approach reveals urine biomarkers and pathways associated with the pathogenesis of lupus nephritis
Objective(s): lupus nephritis (LN) is a severe form of systemic lupus erythematosus (SLE) with renal complications. Current diagnosis is based on invasive renal biopsy and serum antibodies and complement levels that are not specific enough. The current study aims to identify new biomarker candidates for non-invasive diagnosis of LN and explore the pathogenic mechanisms...
متن کاملIn silico identification of miRNAs and their target genes and analysis of gene co-expression network in saffron (Crocus sativus L.) stigma
As an aromatic and colorful plant of substantive taste, saffron (Crocus sativus L.) owes such properties of matter to growing class of the secondary metabolites derived from the carotenoids, apocarotenoids. Regarding the critical role of microRNAs in secondary metabolic synthesis and the limited number of identified miRNAs in C. sativus, on the other hand, one may see the point how the characte...
متن کامل